
Sourcecode: Example4.c

Sourcecode: Example4.c ii

COLLABORATORS

TITLE :

Sourcecode: Example4.c

ACTION NAME DATE SIGNATURE

WRITTEN BY February 12, 2023

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

Sourcecode: Example4.c iii

Contents

1 Sourcecode: Example4.c 1

1.1 Example4.c . 1

Sourcecode: Example4.c 1 / 5

Chapter 1

Sourcecode: Example4.c

1.1 Example4.c

/***/
/* */
/* Amiga C Encyclopedia (ACE) Amiga C Club (ACC) */
/* -------------------------- ------------------ */
/* */
/* Manual: AmigaDOS Amiga C Club */
/* Chapter: Files Tulevagen 22 */
/* File: Example4.c 181 41 LIDINGO */
/* Author: Anders Bjerin SWEDEN */
/* Date: 93-03-15 */
/* Version: 1.0 */
/* */
/* Copyright 1993, Anders Bjerin - Amiga C Club (ACC) */
/* */
/* Registered members may use this program freely in their */
/* own commercial/noncommercial programs/articles. */
/* */
/***/

/* This program will open an already existing file and update */
/* the values in it (we simply add 50 to each value). Since */
/* we do not want any other program to destroy our updated */
/* values we will lock the file exclusively while we are using */
/* it. */
/* */
/* Since we want to put an exclusive lock on an already */
/* existing file we have to use the new "OpenFromLock()" */
/* function to open the file once we have successfully locked */
/* it. This example needs dos library V36 or higher. */

/* Include the dos library definitions: */
#include <dos/dos.h>

/* Now we include the necessary function prototype files: */
#include <clib/dos_protos.h> /* General dos functions... */
#include <stdio.h> /* Std functions [printf()...] */

Sourcecode: Example4.c 2 / 5

#include <stdlib.h> /* Std functions [exit()...] */

/* Number of values we want to update: */
#define NUMBER_VALUES 10

/* Set name and version number: */
UBYTE *version = "$VER: AmigaDOS/InputOutput/Example4 1.0";

/* Declare an external global library pointer to the Dos library: */
/* (Since the Dos library is always open we do not have to open it */
/* ourself. We simply declare the pointer as an external pointer */
/* and it will automatically be initialized for us. Very handy. */
/* We need a pointer to the Dos library so we can check which */
/* version the user has.) */
extern struct DosLibrary *DOSBase;

/* Declared our own function(s): */

/* Our main function: */
int main(int argc, char *argv[]);

/* Main function: */

int main(int argc, char *argv[])
{

/* A "BCPL" pointer to our lock: */
BPTR my_lock;

/* A "BCPL" pointer to our file: */
BPTR my_file;

/* Store the collected numbers here: */
int my_values[NUMBER_VALUES];

/* Store here the number of bytes actually read: */
long bytes_read;

/* Store here the number of bytes actually written: */
long bytes_written;

/* A simple loop variable: */
int loop;

/* Check which version of the dos library the user has: (Since */
/* this program is using the new "OpenFromLock()" function */

Sourcecode: Example4.c 3 / 5

/* which was introduced in Release 2 we have to make sure that */
/* the user really has the new dos library V36 or higher.) */
if(DOSBase->dl_lib.lib_Version < 36)
{

/* The user has a dos library which is too old! Inform the */
/* user and quit immediately: */
printf("Your Dos Library is too old!\n");
printf("This program needs V36 or higher!\n");

/* Exit with an error code: */
exit(20);

}

/* Put an exclusive lock on the file: */
my_lock = Lock("RAM:HighScore.dat", EXCLUSIVE_LOCK);

/* Could we lock the file successfully? */
if(!my_lock)
{

/* Problems! Inform the user: */
printf("Could not put an exclusive lock on the file!\n");
printf("The file does not exist or is used by some one else!\n");

/* Exit with an error code: */
exit(21);

}

/* The file has now been locked: */
printf("The file has now an exclusive lock on it!\n");

/* We will now try to open the file with help */
/* of the lock we already have: */
my_file = OpenFromLock(my_lock);

/* Have we opened the file successfully? */
if(!my_file)
{

/* Problems! Inform the user: */
printf("Error! Could not open the file!\n");

/* Unlock the file: */
UnLock(my_lock);

/* Exit with an error code: */
exit(22);

}

/* The file has now been opened: */
printf("File open!\n");

/* Load the values: */

Sourcecode: Example4.c 4 / 5

printf("Loading values...\n");

/* Collect the 10 values: */
bytes_read = Read(my_file, my_values, sizeof(my_values));

/* Did we get all data? */
if(bytes_read != sizeof(my_values))
{

/* No! We could not read all values! */
printf("Error! Could read all values!\n");

/* Close the file: */
Close(my_file);

/* Unlock the file: */
UnLock(my_lock);

/* Exit with an error code: */
exit(23);

}
else
{

/* OK! */
printf("All values were successfully collected!\n");

}

/* We will now "update" the values: */
printf("Updating the file...\n");

/* We simply add 50 to each value: */
for(loop = 0; loop < NUMBER_VALUES; loop++)
{

printf("Value[%2d]: %5d", loop, my_values[loop]);
my_values[loop] += 50;
printf(" -> %5d\n", my_values[loop]);

}

/* All value have been updated and should now be saved! */
printf("All values have been updated!\n");

/* We will now save the values again. To do this we have to */
/* move the file cursor to the beginning of the file so we */
/* can overwrite the old vlues: */
Seek(my_file, 0, OFFSET_BEGINNING);

/* Overwrite the old values: */
bytes_written = Write(my_file, my_values, sizeof(my_values));

/* Did we write all data? */
if(bytes_written != sizeof(my_values))
{

/* No! The numbers actually written was less */
/* than we wanted to write! */

Sourcecode: Example4.c 5 / 5

printf("Error! Could not save all values!\n");

/* Well, in this example we do not do much more about the error. */
}
else
{

/* Yes, all numbers have been written to the file! */
printf("All values were saved successfully!\n");

}

/* Close the file: */
Close(my_file);

/* Unlock the file: */
UnLock(my_lock);

/* The End! */
exit(0);

}

	Sourcecode: Example4.c
	Example4.c

